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Abstract

Previous studies on physical boundary conditions for flame–boundary interactions of an ideal, multicomponent,

compressible gas have neglected reactive source terms in their boundary condition treatments. By combining analyses of

incompletely parabolic systems with those based on the hyperbolic Euler equations, a rational set of boundary con-

ditions is determined to address this shortcoming. Accompanying these conditions is a procedure for implementation

into a multidimensional code. In the limits of zero reaction rate or one species, the boundary conditions reduce in a

predictable way to cases found in the literature. Application is made to premixed and nonpremixed flames in one and

two dimensions to establish efficacy. Inclusion of source terms in boundary conditions derived from characteristic

analysis is essential to avoid unphysical generation of pressure and velocity gradients as well as flow reversals. Minor

deficiencies in the boundary conditions are attributed primarily to the diffusive terms. Imposing vanishing diffusive

boundary-normal flux gradients works better than imposing vanishing fluxes but neither is entirely satisfactory.
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1. Introduction

A recurrent problem encountered during the simulation of compressible fluid flows at open boundaries is

how to suppress all unwanted effects of the artificial boundary. The majority of the literature on this topic

focuses on boundary conditions derived from the (hyperbolic) Euler equations for a simple gas. There are
several different approaches to boundary conditions for the hyperbolic Euler system of equations, (see [1–3]

for reviews). Since many of these approaches are designed for use in computational aeroacoustics, they set

high standards for the amount of reflection acceptable at outflow boundaries [4].

For viscous, multicomponent, reacting flow fields governed by the (incompletely parabolic) Navier–

Stokes equations (NSEs), however, the literature provides far less guidance. In addition to Euler
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phenomenon (e.g., inviscid wave propagation), physical boundary conditions for reactive NSE flows must

consider the possibility of strong diffusive and reactive source terms (e.g. a flame) at or near the boundary.

This must be done in a consistent way, and should reduce to an Euler treatment in the absence of diffusive

effects [5,6].

Among the most promising approaches to practical and implementable boundary conditions for the

NSE are those of Dutt [7] and Hesthaven and Gottlieb [8]. Hesthaven and Gottlieb present asymptotically

stable open boundary conditions for the NSE utilizing linearization and localization based on the con-

servation variables. Their work is rather unique in that it seamlessly combines a characteristic treatment
within the incompletely parabolic equation procedure outlined by Gustafsson and Sundstr€oom [5]. However,

the extension of this approach to gas mixtures remains unsolved. Dutt provides a general approach to

reducing the scope of boundary condition possibilities within the structure outlined by Gustafsson and

Sundstr€oom and Michelson [9]. Poinsot and Lele [10] and Poinsot and Veynante [11] essentially combine the

approaches of Dutt for incompletely parabolic systems, with modifications, and Thompson [12] for hy-

perbolic Euler equations into a particularly useful set of procedures for simple gases. Despite known de-

ficiencies in dealing with acoustic waves which encounter the boundary obliquely [1,2], Thompson�s
approach is widely used in NSE simulations [10–19].

To our knowledge, Baum et al. [14] and Th�eevenin et al. [15] offer the only papers which claim to be able

to pass a flame through a boundary. As will be shown, these approaches give rise to very large unphysical

pressure and velocity waves as flames encounter boundaries. Further, source terms and diffusive terms are

neglected in their boundary condition treatment. This paper offers an improvement over these approaches

by presenting a unified treatment which allows passage of a flame through the boundary without dra-

matically affecting the solution on the interior.

The goal of this paper is to provide useful boundary condition strategies that minimize flame–boundary

interaction. By clarifying both the number of conditions required and the proper form for these conditions,
a well-conceived set of boundary conditions is constructed. The new conditions combine elements from the

study of both incompletely parabolic (NSE) and hyperbolic (Euler) equations. A clear approach is then

presented to boundary condition specification that allows passage of viscous, exothermic flames through an

open inflow or outflow boundary with a minimum of interaction with the boundary. The focus will be on

time-accurate simulations as opposed to steady state computations using a Cartesian grid.

In Section 2, general background for incompletely parabolic equations (the multicomponent NSE) such

as the proper number and form of the boundary conditions will be considered. Following this, charac-

teristic analysis based on the Euler equations is performed while retaining source terms. Section 3 focuses
on the specific form of the subsonic boundary conditions that will be used in this work. These boundary

conditions reduce, in a natural way, to those required for nonreacting mixtures as well as those for a single

species. Results of applying the proposed boundary conditions to various reacting flow simulations are

contained in Section 4. Conclusions are presented in Section 5. Appendix A provides implementation

details for characteristic treatment in multidimensional codes.
2. Background

The NSEs for multicomponent reacting flows may be written in terms of the conservative variables

U ¼ fqu; qv; qw; q; qe0; qYigT as

o

ot

qua
q
qe0
qYi

2
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where rb is the gradient operator in direction b, Yi is the mass fraction of species i, Wi is the molecular

weight of species i, sba is the viscous stress tensor, qb is the heat flux vector, Vib is the species mass diffusion

velocity, _xxi is the molar production rate of species i, and e0 is the specific total energy (internal energy plus

kinetic energy), e0 ¼ ðua � ua=2Þ � ðp=qÞ þ h. Greek subscripts a, b, and c are spatial indices, while the

subscript i is a species index.

Before one can rationally discuss boundary condition options for the NSE, one must clearly establish:

(1) the correct number of boundary conditions that should be applied to assure well-posedness, and (2) the

general permissible structure of these conditions. When the proper number of conditions is exceeded, the
boundary is over-specified, and two issues arise [6]: (1) it is unclear which boundary conditions are influ-

encing the solution and (2) the underlying solution is generally not continuous. An over-specified boundary

may then be regarded as a stationary source of discontinuities [6].

2.1. Number and form of boundary conditions

For simple gases, the appropriate number of boundary conditions for the NSE has been well-established

[5,20–23]. Extending the treatment of Gustafsson and Sundstr€oom [5] and Strickwerda [20] to multicom-

ponent gases, we obtain Table 1, where Ndim is the number of spatial dimensions. ðN � 1Þ is used because

one species equation is redundant in the presence of the continuity equation.

With the number of boundary conditions to be enforced known, we next consider the proper form of the

boundary conditions. Gustafsson and Sundstr€oom [5] recommend boundary conditions of the form

�R11 0

0 0

� �
ðn � rÞ wI

wII

� �
þ S11 S12

S21 S22

� �
wI

wII

� �
¼ gT ; ð2Þ

where n is the boundary-normal direction g is a prescribed function and � represents a transport coefficient

such as viscosity or thermal conductivity. The vector wI represents variables which have diffusive terms in
their governing equations, while wII represents variables which do not. For the NSE, wI ¼ fu; v;w; p; Yig
and wII ¼ fqg. The choice of p as the energy variable is made for convenience; temperature or entropy is an

equally valid choice.

Michelson proves that (2) are uniformly well posed [9]. The goal of this structure is to preclude the

formation of strong boundary layers at the computational boundaries [24]. Note that the conditions are

essentially Robin-type boundary conditions. Terms having gradients tangential to the boundary are not

included in this formulation. Strickwerda [20] includes tangential terms in an analysis that assumes constant

viscosity, but gives no suggestions as to implementation. Halpern [21] and Tourrette [25] include tangential
terms similar to Strikwerda, but linearize the NSE. The results are cumbersome and their extension to

reacting mixtures is a daunting prospect. Another observation on the form of the BCs for the NSE is that

terms of the form ðn � rÞðrwÞ (i.e., gradients of fluxes) do not appear to avoid the development of strong

boundary layers. This is also consistent with Michelson [9,24]. In spite of this, flux-gradient boundary

conditions are often used sucessfully [10,11].
Table 1

Number of boundary conditions required for the Euler and Navier–Stokes Equations

Euler Navier–Stokes

Supersonic inflow Ndim þ 2þ ðN � 1Þ Ndim þ 2þ ðN � 1Þ
Supersonic outflow 0 Ndim þ 1þ ðN � 1Þ
Subsonic inflow Ndim þ 1þ ðN � 1Þ Ndim þ 2þ ðN � 1Þ
Subsonic outflow 1 Ndim þ 1þ ðN � 1Þ
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Working within the framework of (2), Dutt [7] provides boundary condition families for supersonic and

subsonic outflows and inflows by evaluating a surface integral expressing the time rate-of-change of an

entropy-like variable. His results use the thermodynamic fluxes for �R11. One may extend Dutt�s results to
gas mixtures in the absence of thermodynamic cross-effects (vanishing thermal diffusion coefficient) for both

outflow and inflow cases by considering the minimization of ordinary entropy generation. The resulting

form of the boundary conditions is shown in Table 2, where t1 and t2 are the boundary-tangential direc-

tions, Jia ¼ qYiVia is the diffusive flux of species i, qaðredÞ ¼ qa �
PN

i¼1 hiJia and qa are the reduced and or-

dinary heat flux vectors, hi is the species specific enthalpy, and ai and gi are prescribed functions. Note that
these conditions are consistent with Table 1 by reducing to the correct number of conditions in the case of

Euler flow. For convenience and because the heat flux and diffusion velocities are treated similarly, we will

impose conditions on the ordinary rather than the reduced heat flux vector. Table 2 serves as a general

guide for selecting boundary conditions.

Because it is unclear what values to use for ai and gi and there is no obvious way to control boundary

reflections, some authors choose to treat convective and diffusive terms separately [10,11] rather than

specifying a Robin-type boundary condition. Hesthaven and Gottlieb [8] retain the Robin-type structure.

We adopt the approach of treating diffusive and convective terms separately, and use Table 2 as a guideline
in combining convective and diffusive boundary conditions.

2.2. Boundary conditions for hyperbolic Euler systems

We now turn our attention to the characteristic treatment of the Euler equations in the hope of com-

bining results with those of the previous analysis. Characteristic treatments offer the possibility of imposing

nonreflecting boundary conditions while assuring stability [26]. Thompson [12] presents a unified treatment

of characteristic boundary conditions, focusing on the one-dimensional form of the governing equations

involving an unsteady term, a scalar source term, and a spatially differentiated term. The analysis considers

the equations at three distinct levels: the conservation variables, the primitive variables, and the charac-

teristic variables. The objective is to recast the evolution equations at the conservation and primitive levels

in terms found within the evolution equation at the characteristic level. Doing this allows one to operate
directly on the characteristics while solving the conservation form of the governing equations. The gov-

erning equations may be written at each of the three levels as

oUa

ot
þrðnÞ � FðnÞ

a þrðtÞ � FðtÞ
a ¼ DðnÞ

a þDðtÞ
a þ sa; ð3Þ
ðPÞ�1

ba + * Pab
oUb

ot
þ A

ðnÞ
bd � ðrðnÞUdÞ þ A

ðtÞ
bd � ðrðtÞUdÞ ¼ D

ðnÞ
b þ D

ðtÞ
b þ sb; ð4Þ
SðnÞ
� ��1

cb
+ * S

ðnÞ
bc
SðnÞ
� ��1

cb

oUb

ot
þLðnÞ

c þA
ðtÞ
cd � ðrðtÞUdÞ ¼ DðnÞ

c þDðtÞ
c þ sc; ð5Þ

where U and U are the conservation and primitive variables, D, D, andD are the diffusive terms, F is related

to the convective terms, and s, s, and s are source terms. Superscripts (n) and (t) denote the boundary-
normal and tangential directions while Roman subscripts a; b; c; d indicate equation indices.



Table 2

Extension of Dutt�s subsonic boundary conditions to gas mixtures

Subsonic outflow Subsonic inflow

(1) — qu � n ¼ g1
(2) ðn � sÞ � n� a2ðu � nÞ ¼ g2 ðn � sÞ � n ¼ 0

(3) ðn � sÞ � t1 ¼ 0 ðn � sÞ � t1 � a3ðu � t1Þ ¼ g3
(4) ðn � sÞ � t2 ¼ 0 ðn � sÞ � t2 � a4ðu � t2Þ ¼ g4
(5) qðredÞ � n ¼ 0 qðredÞ � n� a5T ¼ g5
(5þ i) qYiðVi � nÞ ¼ 0, i ¼ 1; 2; . . . ;N � 1 qYiðVi � nÞ � a5þiYi ¼ g5þi, i ¼ 1; 2; . . . ;N � 1
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For the analysis done in this paper, U ¼ fqu; qv; qw; q; qe0; qYigT and U ¼ fu; v;w; q; p; YigT. The choice
of pressure as the energy variable is made because of the pressure gradient term in the momentum equations

thus keeping the results as clean as possible. It is equally correct, although far more messy, to choose

temperature or entropy as the energy variable. The matrices in (3)–(5) are given by A ¼ P�1Q, Q ¼ oF=oU,
P ¼ oU=oU, and the columns of SðnÞ are the right eigenvectors of AðnÞ. Expressions for P and Q are given in

Appendix A. Comparing (1) and (3), one may easily determine F, D, and sa. Then, the terms in Eqs. (4) and

(5) may be determined using the matrices P and S.
For characteristic boundary treatments, viscous/diffusive terms are dropped and only boundary-normal

inviscid terms are retained, leading to the locally one-dimensional inviscid (LODI) equations, which may be
written terms of conserved, primitive, and characteristic variables as

oUa

ot
þ PabS

ðnÞ
bc L

ðnÞ
c ¼ sa;

oUb

ot
þ S

ðnÞ
bc L

ðnÞ
c ¼ sb; SðnÞ

� ��1

cb

oUb

ot
þLðnÞ

c ¼ sc; ð6Þ

where sometimes one defines d
ðnÞ
b ¼ S

ðnÞ
bc L

ðnÞ
c . The LðnÞ

c are the wave amplitudes for the characteristic

variables. Thus, by controlling the Lc, we are able to directly control waves propagating through the

domain. Hedstrom�s [27] criterion for nonreflection now becomes LðnÞ
c ¼ sc, rather than LðnÞ

c ¼ 0 as is
commonly done.

The specific values of PabS
ðnÞ
bc L

ðnÞ
c , S

ðnÞ
bc L

ðnÞ
c , ðSðnÞÞ�1

cb oUb=ot, and LðnÞ
c for each boundary-normal direction

as well as sb and sc are given in Appendix A.
3. Boundary closures

Having now established the form and number of boundary conditions for the NSE, we now consider
specific boundary conditions and their implementation within the framework established in Sections 2.1

and 2.2.

3.1. Subsonic nonreflecting outflow conditions

For a subsonic outflow, Table 1 shows that the Euler equations require 1 condition while the Navier–

Stokes require ð4þ N � 1Þ. All eigenvalues of AðnÞ are leaving the domain except one. At the left end of the

domain, k5 ¼ uþ c is entering the domain while at the right end, k1 ¼ u� c is entering. Smooth transition

from Navier–Stokes boundary conditions to Euler boundary conditions suggests that we should use only

ð3þ N � 1Þ viscous boundary conditions (as they vanish in the Euler limit). From Table 2, we may set

ðn � sÞ � t1 ¼ 0, ðn � sÞ � t2 ¼ 0, q � n ¼ 0, ðqYiViÞ � n ¼ 0. However, we found that specifying zero fluxes

normal to the boundary was unstable. This is not surprising, given that this would introduce strong spatial
discontinuities into the diffusive fluxes which, when differentiated, would produce very large terms in the

governing equations. When nothing is known a priori about the flux profile, it may be prudent to impose a
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vanishing boundary-normal flux gradient. This is also not ideal, and violates the structure shown in (2), but

it is also not as severe as zeroing the boundary-normal flux. Poinsot and Lele and Poinsot and Veynante

choose this approach by imposing a slight variation of what Dutt proposed:

ðrcsbaÞncnbt1;a ¼ 0; ðrcsbaÞncnbt2;a ¼ 0; ðrbqaÞnbna ¼ 0; ½rbðqYiViaÞ�nbna ¼ 0: ð7Þ

As the dimensionality of the problem is reduced, the tangential conditions in (7) dissolve. Imposing the

vanishing of still higher boundary-normal gradients (which is an even stronger violation of (2)) does not

work. Alternatively, if one were to keep track of fluxes as they approached the outflow boundary, it

might be possible to reasonably specify the fluxes as nonzero rather than having to resort to imposing
flux gradients. This may be useful if tangential fluxes are small [28]. We should point out that

Nordstr€oom [29] found that imposing second-derivative conditions at a supersonic boundary gave rise to

time-exponential error growth at the boundary. He also comments that one cannot expect accurate

results through imposition of vanishing second-derivatives at an subsonic outflow boundary [30].

Furthermore, as mentioned in Section 2.1, there is no theoretical justification for specifying second

derivative conditions. However, while many boundary condition formulations do not lead to a well-

posed problem (as may be the case with (7)), they may produce good results when applied to practical

problems [31].
The last boundary condition that we may specify without over-prescribing the boundary should be either

inviscid or a Robin boundary condition having inviscid and viscous parts. This way one boundary con-

dition is imposed regardless of whether the flow is Euler or Navier–Stokes. As it is unclear how to apply

Dutt�s boundary-normal momentum condition rationally, we instead choose a characteristic condition.

This allows us to use the last degree of freedom to minimize reflection. Therefore, we wish to control L5 at

the left end of the domain (because k5 ¼ uþ c is entering) and L1 at the right end. Extending the treatment

of Rudy and Strikwerda [32] and Poinsot and Lele to include source terms, we set

L5 ¼ s5 þ ½rcð1�M2Þðp � p1Þ�=2L; Left Boundary; ð8Þ
L1 ¼ s1 þ ½rcð1�M2Þðp � p1Þ�=2L; Right Boundary; ð9Þ

where Rudy and Strikwerda suggest r ¼ 0:287, c is the speed of sound, M is a suitable Mach number

associated with the boundary, p is the pressure at the boundary point, p1 is some reference pressure we

would like the boundary to stay near, and L is the length of the computational domain normal to the

boundary. The source terms s1 and s5 are nonzero and given in Table 4.
In summary, for a nonreflecting outflow condition, we impose viscous conditions according to (7) and

characteristic equations according to (8) and (9).
3.2. Subsonic inflow conditions

For a subsonic inflow, Table 1 shows that the Euler equations require ð4þ N � 1Þ conditions whereas
the Navier–Stokes require ð5þ N � 1Þ. A seamless transition from Navier–Stokes to Euler conditions

suggests that one of these conditions should be purely viscous. Diffusive and heat fluxes are each vector

quantities and share the same thermodynamic forces. It does not make sense to arbitrarily manipulate one

of these alone. Viscous stress has two tangential components and one normal component. Hence, if only

one flux term must be manipulated, normal stress would seem most reasonable. Dutt recommends

ðn � sÞ � n ¼ 0 to achieve a maximally dissipative boundary condition. Poinsot and Lele recommend a slight
adaptation of this;

ðrcsbaÞncnbna ¼ 0: ð10Þ



508 J.C. Sutherland, C.A. Kennedy / Journal of Computational Physics 191 (2003) 502–524
If inflow data permits and it is sufficiently equilibrated, one might be well advised to impose the actual value

of ðn � sÞ � n. With the viscous condition specified using one of these three options, we have ð4þ N � 1Þ
conditions remaining. We now discuss two ways to impose these conditions.

3.2.1. Nonreflecting inflow conditions

Nonreflecting boundary conditions are achieved by setting as many La ¼ sa as possible. Therefore, we

achieve a nonreflecting inflow by setting

L2 ¼ s2; L3 ¼ s3; L4 ¼ s4; L5þi ¼ s5þi: ð11Þ

On the left boundary, L5 ¼ s5 is set, while on the right boundary, this is reversed, and L1 ¼ s1 is set. Eqs.

(10) and (11), along with a condition on L5 or L1 on the right and left boundaries, respectively, provide a

complete specification of a nonreflecting inflow.

It should be remarked that several papers make a subtle over-specification on certain boundaries. For
a subsonic inflow where one would like to specify many of the variables directly, Poinsot and Veynante

[11] offer a subsonic inflow (which they call SI-1) where they are permitted 5þ ðN � 1Þ conditions. They
specify u, v, w, T , and ðN � 1Þ of the Yi. One condition is then available for specification. They then

impose conditions on d1, along with L3 ¼ 0, L4 ¼ 0, and L5þi ¼ 0. Although it is true that these last

three conditions are consequences of their LODI system rather than independent specifications, this is

not true for the equations to which the conditions are actually being applied, the NSE. Hence they are

specifying 7þ 2ðN � 1Þ conditions. It is likely that this over-specification is mild because of the, hope-

fully, minor deviation between the one-dimensional Euler and multidimensional NSE at the boundary
grid points.

3.2.2. Hard inflow conditions

At a hard inflow, we wish to directly specify many of the variables in, possibly, a time dependent manner.

At the same time we would like that the inflow boundary not be a strong source of disturbances. One may

also ask the hard inflow boundary to be relatively transparent to waves emanating from within the com-

putation domain [18]. Simultaneously doing each of these at the inflow of a reacting fluid is a tall order. We

therefore attempt to specify a reacting flow which minimizes the disturbance output of the boundary. There

are many approaches to this matter. One is to simply specify fu; v;w; T ; Yig along with a condition on the

boundary-normal viscous stress associated with the boundary-normal momentum equation, as described in

(10).
Poinsot and Lele also propose, in the context of a simple gas, a condition where effectively

fu; v;w; T ; Yig are specified but a nonviscous condition replaces the viscous condition described above. If

the flow should be locally Euler flow, however, the boundary would become over-specified. With this

caveat, we look for a time dependent LODI relation for either pressure or density; oUa=ot þ dðnÞa ¼ sa in

order to keep the perturbations introduced into each variable self-consistent to the one-dimensional Euler

level. The equation of state will allow the other to be determined as temperature and mass fraction have

already been specified. Choosing density, d
ðnÞ
1 is a function of L1, L2, and L5. For pressure, d

ðnÞ
2 is a

function of L1, and L5. We choose the former because it allows the incorporation of more degrees of
unsteadiness than the latter as well as the fact that this approach has met with prior success [10,14]. We

first write

oq
ot

þ d
ðnÞ
1 ¼ oq

ot
þ 1

c2
c2LðnÞ

2

h
þ L

ðnÞ
5

�
þL

ðnÞ
1

�i
¼ 0: ð12Þ

At the left boundary,L1 is imposed from interior data whileL2 andL5 are chosen. At the right boundary,

L5 is imposed from interior data while L2 and L1 are chosen. Let us assume that each imposed variable
includes time variation as u � n ¼ u ¼ uðtÞ, T ¼ TðtÞ, and Yi ¼ YiðtÞ. Therefore,
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ou

ot
þ 1

qc
L

ðnÞ
5

�
�L

ðnÞ
1

�
¼ su; ð13Þ
oT

ot
þ pdðnÞ2

T
� TdðnÞ1

q
� T

XN�1

i¼1

WiNL
ðnÞ
5þi ¼

T
p
sp � T

XN�1

i¼1

WiN sYi ; ð14Þ
oYi

ot
þL

ðnÞ
5þi ¼ sYi ; ð15Þ

where WiN ¼ W ðW �1
i � W �1

N Þ, W is the mixture molecular weight, and d
ðnÞ
1 and d

ðnÞ
2 are given in Table 7.

Solving these equations, we now specify either L1 or L5 from interior data and use

L
ðnÞ
5 ¼ L

ðnÞ
1 � qc

ou

ot

�
� su

�
; L

ðnÞ
1 ¼ L

ðnÞ
5 þ qc

ou

ot

�
� su

�
; ð16Þ
L
ðnÞ
2 ¼ ðc� 1Þ

c2
L

ðnÞ
5

�
þL

ðnÞ
1

�
þ q
T
oT

ot
þ qW

XN�1

i¼1

WiN
oYi

ot

� �
� q

p
sp; ð17Þ

to complete the specification of d
ðnÞ
1 in (12).
3.3. Implementation strategy

Implementation of boundary conditions such as those described above is problematic. Ultimately,

boundary conditions need to be specified on the integration vector of conservation variables, U. However,

actual boundary conditions at hand may appear on primitive variables like temperature or other variables
that are nontrivially related to the conservation variables such as entropy. Further, boundary conditions

may involve linear combinations of all of these variables and their gradients or contain transport coeffi-

cients with complicated functional dependencies. To avoid internal inconsistency, one must establish a

procedure whereby any arbitrary set of boundary conditions may be uniquely and accurately mapped onto

specifications of U. Computationally, this should be an expeditious procedure. As this is a daunting

challenge, we choose to accept some degree of internal inconsistency in the interest of ease of implemen-

tation. We make no claim of internal consistency or that the following procedure is best. With these ca-

veats, our implementation procedure is as follows.
(1) At the beginning of all stages or steps of the time-integration, decompose the U-vector into needed

primitive variables, U ¼ fu; v;w; q; p; Yig.
(2) Impose any boundary conditions involving primitive variables.

(3) Compute diffusive flux terms (sba, qa, qYiVia).

(4) Impose any boundary conditions on the diffusive flux terms.

(5) Compute the full right-hand side (RHS) of all equations.

(6) Impose characteristic boundary conditions as required. This is done in two steps. First, we remove the

terms in the RHS associated with the characteristics, rðnÞ � FðnÞ at all boundary points.
(a) Using Table 5, compute all LðnÞ

a from interior data. This is done independent of whether the asso-

ciated eigenvalue is entering or leaving the domain.

(b) Using Table 7, compute d
ðnÞ
b from LðnÞ

a .

(c) Using Table 8, compute rn � FðnÞ from the d
ðnÞ
b and subtract it from each RHS.

Second, we impose characteristic boundary conditions by manipulating the LðnÞ
a , update rðnÞ � FðnÞ at all

boundary points, and then add it back to the RHS.
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(a) Impose values for LðnÞ
a associated with incoming eigenvalues according to the physical boundary

conditions. The LðnÞ
a associated with outgoing eigenvalues are computed from interior data using

Table 5.

(b) Using Table 7, recompute the d
ðnÞ
b from theLðnÞ

a (some of which were modified in the previous step).
(c) Using Table 8, compute rðnÞ � FðnÞ from the revised d

ðnÞ
b and add it back to each RHS.

(7) Update the U-vector at all boundary points using the corrected RHS.
4. Results

Numerical experiments to test the proposed boundary conditions are done using a three-dimensional

Direct Numerical Simulation (DNS) code. The code solves the compressible, multicomponent, reacting
Navier–Stokes in conservation form as given by (1). Supplementary relations that are needed to solve

this system are given in many books [33]. Body force terms, barodiffusion, and terms involving the

thermal diffusion coefficient are neglected. Mixture-averaged transport coefficients are calculated from

the CHEMKINHEMKIN TRANSPORTRANSPORT package [34]. For the results presented here, we used a hydrogen–air

mechanism developed by Yetter et al. [35]. Since body forces such as gravity are not considered, the

only nonzero source terms in (6) are sp and sYi . From the results given in Appendix A, we may write sp
and sYi as

sp ¼ qð1� cÞ
XN�1

i¼1

ðhi � hN ÞsYi ; sYi ¼ Wi _xxi=q: ð18Þ

The corresponding sources at the characteristic level, sc, may be determined from Table 4.

The governing equations are discretized in space on a rectangularCartesian grid using eighth-order, explicit

finite-difference derivatives. Boundary closures to the derivative operators are ð3; 3; 4; 6� 8� 6; 4; 3; 3Þ [36].
AlthoughRowley and Colonius [4] study the effects of lower-order numerical boundary stencils for derivative

operators on boundary condition behavior, this matter seems quite secondary for flame–boundary interac-

tions. Tenth-order filtering is done on the conservation variables at each step to remove unresolved wave-
number information [36]. Time integration is accomplished using a six-stage, fourth-order vdH-type,

low-storage Runge–Kutta method in conjunction with a PID error controller [37]. The Runge–Kutta pair is

SC-stable at all points along its stability boundary.

Here and below, we will distinguish between two different nonreflecting outflow boundary conditions: A

and B. Nonreflecting A disregards source terms by setting sc ¼ 0, and, with the exception of the diffusive

treatment, is equivalent to the conditions suggested by Baum et al. [14]. Nonreflecting B retains source

terms, with sc given in Table 4.

4.1. Comments on nonreflecting inflow conditions

As mentioned in Section 3.2.1, one condition at a nonreflecting inflow is L5þi ¼ s5þi. It should be

mentioned that at a nonreflecting inflow, the source terms in the species equations at the characteristic level,
s5þi ¼ sYi should be neglected, i.e., set L5þi ¼ 0. We have found that including source terms in the char-

acteristic species equations can lead to unstable results regardless of the stiffness of the chemical mecha-

nism. For example, feeding a stoichiometric premixture of hydrogen and air at 500 K yielded time-unstable

boundary behavior for L5þi ¼ s5þi. If L5þi ¼ 0 was used, however, there was no problem. While the

characteristic species equations are not stable when source terms are included, the term sp is not a problem

since it involves a summation over the heats of reaction, which seems to be less destabilizing than individual

reaction rates. All results presented below will use L5þi ¼ 0 at nonreflecting inflows.
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4.2. Case 1: 1D premixed ignition

For this case, a stoichiometric mixture of hydrogen and air is ignited by a temperature spike. The do-

main is 2.0 mm with Dx ¼ 10 lm, and the average timestep was near 1� 10�8 s. The domain initially

contains a stoichiometric premixture of H2 and air at 300 K and 1 atm pressure. There is no mean con-

vective velocity imposed. A gaussian temperature spike is placed in the mixture at x ¼ 1:2 mm to provide an

ignition source. The spark is placed off center in the domain to eliminate symmetry and allow the flame

fronts to encounter the boundaries at different times. Both left and right boundaries are non-reflecting (see
Fig. 1. Velocity (dashed) and Pressure (dotted) fields for Case 1 at 3.0, 4.0, and 4.25� 10�5 s. HO2 mass fraction (solid) is shown to

indicate flame position. Both boundaries are nonreflecting. The figures on the left use nonreflecting A; figures on the right use non-

reflecting B.
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Section 3.1), and the diffusive conditions applied at both boundaries are oqx=ox ¼ 0, oJx;i=ox ¼ 0,

i ¼ 1; 2; . . . ;N � 1.

As time proceeds, we expect to see a pressure rise associated with ignition, and then the pressure should

equilibrate back to 1 atm. Two premixed flame fronts will develop and propagate outward toward the

nonreflecting boundaries, generating an outward convective velocity due to the expansion associated with

combustion. Ideally, the boundary conditions should have no effect on any of the solution variables. Fig. 1

shows the velocity and pressure profiles at various times for nonreflecting A (which neglects source terms)

and nonreflecting B (which retains source terms) in the left and right columns, respectively. The mass
fraction of HO2 is also shown to indicate the flame position. The first frame in Fig. 1 is shown after the

initial pressure and velocity waves associated with ignition have exited the domain. Both approaches are

identical until the flame encounters the boundary, at which point nonreflecting A gives rise to large pressure

and velocity waves which are generated at the boundary and propagate back through the domain. The

second frame in Fig. 1 shows that nonreflecting A has developed a large pressure gradient. Indeed, the

pressure gradient is so strong that a flow reversal is generated by nonreflecting A, as shown in the second

and third frames. The pressure gradient in the third frame is enormous, as is the velocity. Note from the first

frame that the maximum velocity is near 11 m/s. However, the velocity induced by nonreflecting A is
approximately 44 m/s in the ð�xÞ direction. It is clear from Fig. 1 that nonreflecting A (which ignores

source terms in the analysis) completely fails when the flame encounters the boundary. On the other hand,

nonreflecting B (which retains source terms in the analysis) performs quite satisfactorily.

4.3. Case 2: 1D nonpremixed ignition with convective flow

Baum et al. [14] demonstrated a nonpremixed flame with a hard inflow left boundary and a nonreflecting

outflow condition on the other end of the domain. A similar configuration is considered here, where the left

boundary is a hard-inflow (see Section 3.2.2) and the right boundary is nonreflecting (see Section 3.1).

Viscous conditions at the right (outflow) boundary are oqx=ox ¼ 0, oJx;i=ox ¼ 0, i ¼ 1; 2; . . . ;N � 1. At the

left (inflow) boundary, osxx=ox ¼ 0 is applied for the viscous condition. The domain is 7.0 mm in length,

with a grid spacing of 10 lm and a timestep of 1.5� 10�8 s. The fuel is 50% H2 and 50% N2 at 300 K, and
the oxidizer is air at 1300 K. A plot of the initial H2, O2, and temperature profiles is shown in Fig. 2. The

initial velocity throughout the domain is 13.0 m/s. The inlet velocity is held fixed at 13.0 m/s, and the inlet

temperature and composition are that of the fuel. As time proceeds, ignition occurs near the stoichiometric

mixture fraction, and a flame develops. The domain considered here is longer than that considered by Baum

et al. to allow the flame more time to develop before it encounters the boundary.
Fig. 2. Initial condition for Case 2 condition showing H2, O2, and temperature profiles.
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Fig. 3 shows the evolution of pressure and velocity profiles. The left column uses nonreflecting A and the

right column uses nonreflecting B. The first frame in Fig. 3 shows the initial conditions. The second frame

shows the field after ignition, at which point nonreflecting A and B are indistinguishable. As the flame

encounters the boundary, however, we observe a large pressure rise from nonreflecting A, while the pressure

in nonreflecting B is equilibrating with the surroundings, and remains unaffected by the flame encountering

the boundary. The magnitude of the pressure rise in nonreflecting A when the flame encounters the

boundary is larger than the pressure rise associated with ignition!

While nonreflecting A demonstrates unphysical behavior in the pressure and velocity fields as the flame
passes through the boundary, the hard inflow boundary acts to limit the magnitude and duration of the

disruptions by maintaining a fixed velocity at the left boundary. While the failure of nonreflecting A is

much less pronounced in this case, it is still present, and is not at all negligible.

It is worthwhile to note that if a nonreflecting inflow condition were used rather than a hard inflow at the

left boundary, then the failure of nonreflecting A becomes much more evident. At a nonreflecting

boundary, the velocity and composition are not held fixed. Fig. 4 shows results at 1.0 and 1.6� 10�4 s.

Initial conditions are identical to those described previously. At 1.0� 10�4 s, we see that the species profiles

are identical. However, there are discernable differences in the pressure and velocity fields. The pressure at
the right boundary is higher for nonreflecting A than for nonreflecting B. This is due to the flame inter-

acting with the boundary. As time proceeds, nonreflecting A generates a huge pressure gradient and a flow

reversal, while nonreflecting B remains stable and allows the flame to pass without disruption on the

pressure or velocity fields. Comparing Figs. 3 and 4, we see that the hard inflow masks the failure of

nonreflecting A in Fig. 3.

4.4. Case 3: 2D premixed flame

Demonstrating the performance of boundary conditions in one-dimensional configurations is useful, but

most practical applications of these boundary conditions are to multidimensional flows. Case 3 considers a

two-dimensional premixed flame front propagating through nonreflecting boundaries. All four boundaries

are nonreflecting (see Section 3.1), with viscous conditions at x boundaries oqx=ox ¼ 0, oJx;i=ox ¼ 0,
i ¼ 1; 2; . . . ;N � 1, osxy=ox ¼ 0, and at y boundaries oqy=oy ¼ 0, oJy;i=oy ¼ 0, i ¼ 1; 2; . . . ;N � 1,

osyx=oy ¼ 0. The domain is 2.0 mm� 2.0 mm, with 150 points in each direction, and initially contains a

stoichiometric premixture of H2 and O2 at 300 K and 1 atm pressure, with a gaussian temperature spike

centered at x ¼ y ¼ 1:2 mm. The premixture ignites and a premixed flame front propagates outward toward

the boundaries.

Fig. 5 shows pressure contours at 1.0, 4.0, 5.5, and 8.5� 10�5 s, with the mass fraction HO2 superim-

posed to mark the flame position. As time proceeds, nonreflecting B remains stable, while nonreflecting A

gives completely unphysical results. The first frame in Fig. 5 shows that, before the flame hits the boundary,
the two simulations are identical. The second frame shows the fields as the flame hits the boundary. The

pressure field for nonreflecting A shows a significant pressure gradient developing. In the third frame in

Fig. 5 nonreflecting A generates a flow reversal at the top and right boundaries, indicated by the HO2

contours. The pressure field for nonreflecting A is highly disrupted relative to the pressure field for non-

reflecting B, and contains large pressure gradients. At 8.5� 10�5 s (the fourth frame), nonreflecting B still

shows the flame structure approaching the left and bottom boundaries with the pressure field uniform at 1

atm (unchanged from the initial condition). Nonreflecting A, on the other hand, shows that the flame has

been obliterated, with flame fragments remaining in the upper left, upper right, and lower right corners. The
pressure field is also highly disrupted, with very large pressure gradients in the domain. Furthermore, the

maximum velocity (not shown here) for nonreflecting A at 85 ls is nearly 32 m/s, an order of magnitude

larger than the velocities in the domain prior to the flame hitting the boundary. The behavior exhibited by

nonreflecting A is completely unphysical.



Fig. 3. Results for Case 2 at 0.0, 0.6, 1.1 and 1.6� 10�4 s. Left boundary is hard inflow, right boundary is nonreflecting. The figures on

the left use nonreflecting A; figures on the right use nonreflecting B.
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Fig. 4. Pressure and velocity profiles for Case 2 at 1.0 and 1.6� 10�4 s. Both boundaries are nonreflecting. The figures on the left use

nonreflecting A; figures on the right use nonreflecting B. Note that the velocity scale is different from Fig. 3.

J.C. Sutherland, C.A. Kennedy / Journal of Computational Physics 191 (2003) 502–524 515
Fig. 5 also demonstrates a few deficiencies in the boundary conditions that were not observed in the one-

dimensional cases. The first noticeable shortcoming is in the pressure field. The pressure contours should be
circular and concentric with the flame. Note that for both nonreflecting A and B, the pressure field is not

circular, even at 1.0� 10�5 s, when the flame has not yet encountered the boundary. Earlier in the simu-

lation, acoustic waves are generated from the temperature spike in the initial condition and these waves

propagate outward, encountering the boundaries at different angles and at different times. Slight defi-

ciencies in the boundary conditions are manifested by the pressure field losing its circular character and

becoming more square-shaped, as seen in Fig. 5 at 3 ls. These deficiencies in characteristic-based boundary

conditions are attributable to partial reflection of oblique waves and are well-known [1,2]. The contribu-

tions made herein do not address this shortcoming of the boundary conditions. However, these deficiencies
are quite secondary in comparison to the deficiencies in former boundary treatments (nonreflecting A) as a

flame encounters the boundary.

The second shortcoming of the boundary conditions is that as the flame approaches an outflow

boundary, it accelerates slightly. This can be seen by examination of the HO2 field, in frames 2–4 of Fig. 5.

This distortion occurs with both nonreflecting A (before failure) and nonreflecting B, and appears to be due

to the treatment of the diffusive terms. As discussed in Section 3.1 we apply a zero normal flux gradient

condition at these boundaries. In a flame, both the diffusive flux and its gradient may be large. Thus,

specifying zero boundary-normal fluxes or zero boundary-normal flux gradients is not physically realistic.
Fig. 6 shows the heat flux contours and vectors at various times as the flame encounters the boundary.

Clearly, the specification of zero flux gradient for heat fluxes at the boundary over-predicts the heat flux as

the flame approaches the boundary. The same is true for the diffusive flux of some intermediate species

(such as H atom) which diffuse outward from the flame zone. Over-prediction of these fluxes could lead to



Fig. 5. Contours of pressure in atm (– � –) and mass fraction of HO2 (–) for Case 3 at 10, 40, 55, and 85 ls. Pressure contour intervals
are 5� 10�4 atm. The figures at left use nonreflecting A; figures at right use nonreflecting B.
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Fig. 6. Heat flux contours and vectors for Case 3 at 35, 40, 45, and 50 ls, showing the consequence of imposing zero flux gradients in

the boundary-normal direction.
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an artificially higher flame speed. It should be mentioned that specification of zero diffusive flux, q � n ¼ 0,

ðqYiViÞ � n ¼ 0, was unstable. This is not surprising, given that this would introduce strong discontinuities

into the diffusive fluxes which, when differentiated, would produce very large terms in the governing
equations. We have been unable to devise a more effective boundary condition for diffusive terms than

zeroing flux gradients.

Figs. 5 and 6 show that the specification of zero flux gradients is not ideal, and leads to unphysical flame

behavior at the boundary. However, the unified approach presented herein allows the flame to pass through

the boundary with minimal effect on the interior of the domain. This capability is very useful, even if flame

behavior at the boundary is not entirely physical.
5. Conclusions

This paper has focused on physical boundary condition theory and procedures for flame–boundary

interactions of an ideal, multicomponent gas flow governed by the compressible NSE. The general form of
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boundary conditions is considered from two somewhat different perspectives: those for incompletely par-

abolic systems and those for the hyperbolic Euler equations based on characteristic analysis. Using these, a

rational mix of the two are used to specify inflow and outflow boundary conditions where nonreflection is

often an objective. Unlike previous efforts at multicomponent flows, critical source terms containing body

force and reaction rate terms are retained in the entire analysis. Accompanying these conditions is a clear

procedure and tables outlining terms required for implementation in a multidimensional code. In the limits

of zero reaction rate or one species, the boundary conditions reduce in a predictable way to the non-re-

acting and simple gas cases found in the literature. Application is then made to premixed and nonpremixed
flames in one- and two-dimensions to establish efficacy.

With one exception, inclusion of source terms into the characteristic analysis provides greatly improved

results relative to cases where source terms were neglected. For the cases considered, only pressure and species

sources are nonzero. Inclusion of the pressure source term was uniformly beneficial. However, for nonre-

flecting inflow boundaries, we found that the source terms in the LODI relations for the species equations, sYi ,
should be neglected. Simulations of both premixed and nonpremixed flames in one-dimension demonstrated

that inclusion of source terms is essential to allow flames to pass through boundaries without significantly

disturbing the interior solution. If source terms are neglected, large pressure gradients are generated, and flow
reversals are observed as the flame encounters the nonreflecting boundary.

A two-dimensional simulation of a premixed flame propagating radially outward shows minor defi-

ciencies in the boundary conditions, particularly in diffusive conditions associated with flames (heat flux

and species diffusive flux). A slight acceleration of flames was observed as the boundary was approached.

This is attributed to the boundary conditions on diffusive terms. There is some ambiguity in the literature as

to the best form of the diffusive boundary conditions. Well-posedness favors specifying fluxes while ex-

perience suggests imposing boundary-normal flux derivatives. Vanishing diffusive fluxes give rise to severe

flux discontinuities and do not work. Imposing vanishing boundary-normal gradients of the diffusive fluxes
seems to be stable, but yields some unphysical behavior, such as slight flame acceleration near boundaries.

More work is needed to address the optimal specification for diffusive boundary conditions, as well as

multidimensional inviscid conditions.
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Appendix A. Practical details for characteristic boundary treatments

Various results for characteristic boundary treatments require the P and Q matrices. Note that these are

cast in terms of N � 1 species because that is the way the equations are actually solved and that they are
provided under the assumption of a Cartesian coordinate system. Furthermore, we assume that the con-

servative and primitive variables are given as U ¼ fqu; qv; qw; q; qe0; qYigT and U ¼ fu; v;w; q; p; YigT, re-
spectively. Then, given the differential thermodynamic identity

de ¼ � cvT
q

dqþ 1

qðc� 1Þ dp þ
XN�1

i¼1

ðhi � hN Þ dYi; ðA:1Þ
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where hi ¼ hi � cpTW =Wi , we may compute P ¼ oU=oU as

q 0 0 u 0 0 0 � � � 0

0 q 0 v 0 0 0 � � � 0

0 0 q w 0 0 0 � � � 0

0 0 0 1 0 0 0 � � � 0

qu qv qw e0 � cvT 1
c�1

p5;6 p5;7 � � � p5;ð5þN�1Þ
0 0 0 Y1 0 q 0 � � � 0

0 0 0 Y2 0 0 q � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

.

0 0 0 YN�1 0 0 0 � � � q

2
66666666666664

3
77777777777775
; ðA:2Þ

with p5;i ¼ qðhi � hNÞ, i ¼ 6; 7; . . . ;N þ 4. Q ¼ oF=oU is then given by
qðuðnÞ þ ud1nÞ qud2n qud3n uuðnÞ d1n 0 0 � � � 0

qvd1n qðuðnÞ þ vd2nÞ qvd3n vuðnÞ d2n 0 0 � � � 0
qwd1n qwd2n qðuðnÞ þ wd3nÞ wuðnÞ d3n 0 0 � � � 0

qd1n qd2n qd3n uðnÞ 0 0 0 � � � 0

q5;1 q5;2 q5;3 ðe0 � cvT ÞuðnÞ cuðnÞ

ðc�1Þ uðnÞp5;6 uðnÞp5;7 � � � uðnÞp5;ð5þN�1Þ

qY1d1n qY1d2n qY1d3n Y1uðnÞ 0 quðnÞ 0 � � � 0
qY2d1n qY2d2n qY2d3n Y2uðnÞ 0 0 quðnÞ � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

.

qYN�1d1n qYN�1d2n qYN�1d3n YN�1uðnÞ 0 0 0 � � � quðnÞ

2
666666666666664

3
777777777777775

;

ðA:3Þ
where n is the boundary-normal direction, uðnÞ ¼ u � n, dan is the Kronicker delta, and q5;a ¼quauðnÞ þ
ðqe0 þ pÞdan, a ¼ 1; 2; 3. Multiplying the conservation form of the NSE by P�1, we obtain expressions for

the source terms at the primitive variables level:

su
sv
sw
sq
sp
sYi

2
6666664

3
7777775
¼

PN�1

i¼1 Yiðfix � fNxÞ þ fNxPN�1

i¼1 Yiðfiy � fNyÞ þ fNyPN�1

i¼1 Yiðfiz � fNzÞ þ fNz
0

ð1� cÞ
PN�1

i¼1 ½ðhi � hNÞWi _xxi � qYiVia � ðf ia � fNaÞ�
Wi _xxi=q

2
66666664

3
77777775
; ðA:4Þ

where f ia is the body force on species i in direction a. The components of the matrix A ¼ P�1Q in the
boundary-normal direction are given by

AðnÞ ¼

uðnÞ 0 0 0 d1n
q 0

0 uðnÞ 0 0 d2n
q 0

0 0 uðnÞ 0 d3n
q 0

qd1n qd2n qd3n uðnÞ 0 0

cpd1n cpd2n cpd3n 0 uðnÞ 0

0 0 0 0 0 uðnÞdij

2
66666664

3
77777775
: ðA:5Þ

In order to apply characteristic boundary treatments in all directions, severalmore resultswill be helpful. First,
the eigenvalues of the AðnÞ matrix, diagðKðnÞÞ ¼ kðnÞc , are given by fkðnÞ1 ; kðnÞ2 ; kðnÞ3 ; kðnÞ4 ; kðnÞ5 ; kðnÞ5þig ¼ fðuðnÞ � cÞ;
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uðnÞ; uðnÞ; uðnÞ; ðuðnÞ þ cÞ; uðnÞg. With the eigenvalues, one may compute the associated right eigenvectors. These

eigenvectors then form the columns of theSðnÞmatrix.Next, the characteristic variables, ðSðnÞÞ�1

ad oUd=ot and the
sources at the characteristic level are given inTables 3 and 4. Thewave amplitude variations for each direction,

L ¼ KðnÞS�1ðrðnÞUÞ, are given in Table 5. Inverting these relations, the boundary-normal gradient of the

primitive variables is expressed in terms of the wave amplitude variations in Table 6. To generate boundary-

normal gradient expressions for the conserved variables rather than the primitive variables we may write

ðn � rÞUa ¼ ðoUa=oUbÞðn � rÞUb ¼ Pabðn � rÞUb. For relations involving temperature or entropy, the differ-

ential relations expressed in terms of the primitive variables

dT ¼ T
p
dp � T

q
dq� TW

XN
i¼1

dYi
Wi

; ðA:6Þ
Table 3

Characteristic variables for each direction

ðSðnÞÞ�1
ad

oUd

ot
x-Direction y-Direction z-Direction
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�
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ð5þiÞd
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oYi
ot

oYi
ot

oYi
ot

Table 4

Source terms at the characteristic level for each direction

sa x-Direction y-Direction z-Direction

s1
1

2
ðsp � qcsuÞ

1

2
ðsp � qcsvÞ

1

2
ðsp � qcswÞ

s2
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c2
sp
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sp

s3 sv su su

s4 sw sw sv

s5
1

2
ðsp þ qcsuÞ

1

2
ðsp þ qcsvÞ

1

2
ðsp þ qcswÞ

s5þi sYi sYi sYi



Table 5

Characteristic wave amplitude variations for each direction

La x-Direction y-Direction z-Direction
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qT ds ¼ 1

ðc� 1Þ dp � cpT dqþ q
XN
i¼1

Tsi

�
� cpTW

Wi

�
dYi; ðA:7Þ

may be used in conjunction with ðn � rÞU presented above by replacing d with ðn � rÞ. One may also relate

source terms by replacing dx with sx, not necessarily at the primitive variable level. The next step is to

generate the dðnÞ using dðnÞ ¼ SðnÞL ¼ SðnÞ½KðnÞSðnÞ �1ðrðnÞUÞ� ¼ A
ðnÞ
bd ðrðnÞUdÞ, and c is the frozen speed of
Table 6

Boundary-normal gradients in terms of wave amplitude variations for each direction

ðn � rÞU x-Direction y-Direction z-Direction

ðn � rÞu 1
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Table 7

dðnÞ as a function of wave amplitude variations for the each direction

db dðxÞ ¼ AðxÞðrðxÞUÞ dðyÞ ¼ AðyÞðrðyÞUÞ dðzÞ ¼ AðzÞðrðzÞUÞ
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Table 8

Boundary-normal convection term, rðnÞ � FðnÞ, for each direction

Equation rðnÞ � FðnÞ ¼ PSðnÞLðnÞ

Continuity d
ðnÞ
1

x-Momentum udðnÞ1 þ qdðnÞ3

y-Momentum vdðnÞ1 þ qdðnÞ4

z-Momentum wdðnÞ1 þ qdðnÞ5

Energy
qudðnÞ3 þ qvdðnÞ4 þ qwdðnÞ5 þ

XN�1

i¼1

qdðnÞ5þiðhi � hN Þ þ ðe0 � cvT ÞdðnÞ1 þ d
ðnÞ
2

ðc� 1Þ

i-Species Yid
ðnÞ
1 þ qdðnÞ5þi
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sound. These are listed in Table 7. Finally, the boundary-normal convection term rðnÞ � FðnÞ ¼ PSðnÞLðnÞ is

given in Table 8. To impose boundary conditions based on the time variation of the primitive or conser-

vation variables, one may use ðoUb=otÞ ¼ sb � d
ðnÞ
b to find ðoUa=otÞ ¼ PabðoUb=otÞ ¼ Pabðsb � d

ðnÞ
b Þ. If re-

lations for temperature or entropy are needed, the thermodynamic relations (A.7) should be used.
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